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Abstract The use of statistical models to approximate 
detailed analysis codes for evolutionary optimization has 
attracted some attention [1-3]. However, those early 
methodologies do suffer from some limitations, the most 
serious of which being the extra tuning parameter 
introduceds. Also the question of when to include more 
data points to the approximation model during the search 
remains unresolved. Those limitations might seriously 
impede their successful application. We present here an 
approach that makes use of the extra information 
provided by a Gaussian processes (GP) approximation 
model to guide the crucial model update step. We present 
here the advantages of using GP over other neural-net 
biologically inspired approaches.  Results are presented 
for a real world-engineering problem involving the 
structural optimization of a satellite boom. 

Keywords: Evolutionally Computation, Optimization, 
Gaussian Processes, Computationally expensive 
problems. 

1 Introduction 
The optimization of complex high dimensional, 
multimodal problems often requires a relatively high 
number of function evaluations. In many real world 
problems, this computational burden cannot be 
afforded. Examples of such problems include large-
scale finite element analysis (FEA) or computational 
fluid dynamics (CFD) simulations. In such 
problems, the cost of a single function evaluation is 
in the order of hours of supercomputer time.  

In is been proven useful to build approximate 
models of the expensive analysis code and use it for 
the purpose of carrying out optimization [4].  These 
approximate models are orders of magnitude cheaper 
to run than the full analysis codes. Many regression 
and interpolation tools could be used to construct 
such an approximation (e.g. least square regression, 
back propagating artificial neural net, response 
surface models, etc.).  

In the multidisciplinary optimization (MDO) 
community the main focus has been on using 
response surface analysis and polynomial fitting 

techniques to build the approximate models. These 
methods have been proven to work well when single 
point traditional gradient-based optimization 
methods are used. However, they cannot cope with 
large dimensional multimodal problems since they 
generally carry out approximation using simple 
quadratic models. [5-11]. 

During the optimization, it is only feasible that 
the expensive analysis be used sparingly. This 
requirement clashes with that of good approximate 
model building, where as many sampled points are 
needed to obtain a good approximation. There is 
hence a need to develop a framework that balances 
those two requirements. Alexandrov et al [12] 
presented an approximation management framework 
for conducting gradient-based search.  

In our earlier work [3], we presented a framework 
for approximate model update based on fitness and 
design of experiments (DOE) criteria. Unlike Ratle’s 
work [1, 2], where only the most recently evaluated 
points were used to construct the approximation, in 
our approach the approximation model was 
continuously expanding; retaining all useful 
information provided by the evolutionary search. To 
limit the cost of model reconstruction, Ratle 
discarded most of the accurately evaluated points 
while updating his approximate model. It is our view 
that for problems of sufficient complexity and 
computational expense, the risk involved is 
discarding potentially useful points from the 
approximate model far outweigh the computational 
savings gained by discarding them.  

Like Ratle, a major drawback of our approach is 
that there were up to five extra tuning parameters to 
adjust for model construction and update. In this 
paper a present a far more elegant and flexible 
approach for carrying approximate model update.    

We use here a Gaussian process approximation 
model, since it has several attractive features. Most 
important of which is the ability to provide an error 
bar for each prediction. An algorithm for 



approximate model update is built around this 
capability. Results on high dimensional multimodal 
real world engineering problem are quite 
encouraging.  

This paper is organized as follows: in the next 
section we justify our choice of using Gaussian 
process over other NN techniques. In section 3 we 
provide a brief description of how prediction is 
carried out using Gaussian processes. Section 4 
describes the Evolutionary-Gaussian processes 
synthesis. Section 5 describes the real world 
problem and details experimental results. The paper 
closes with a brief conclusion and discussion of 
future work.  

2 Why Gaussian Processes? 
Although other artificial neural network models 
could have been used (e.g. multilayer preceptron 
networks (MLP), and radial basis function networks 
RBFN), to construct an approximate model, 
Gaussian Process was preferred for the following 
reasons: 
1. The ability to overcome the problem of over-

fitting, given a limited data set: Over-fitting 
could be handled using other ANNs (by using 
regularization for instance), but still the solution 
obtained might be sensitive to the ANN’s 
architecture (number of layers, number of nodes 
in each layer, …etc). It has been shown by Neal 
[14] that the properties of a neural network with 
one hidden layer converge to those of a 
Gaussian process as the number of hidden 
neurons tends to infinity if standard 
regularization “weight decay” priors are 
assumed.  

2. A limited number of meaningful tunable 
parameters: Unlike the weights of other ANNs, 
the GP’s hyperparameters are limited to the 
problem size. These optimized hyperparameters 
can indicate different functional relationships 
between the model parameters. Furthermore, if 
the model builder understands these functional 
relationships, s/he could incorporate this 
knowledge in the form of priors to be used 
during the optimization of the hyperparameters. 
This is expressed in the ( )P θ term in equations 
(12) and (13). 

3. Online data addition without the need of having 
to re-optimize the model parameters: This may 
substantially reduce the computational cost of 
increasing the number of training points after the 
GP has been optimized for a large subset of 
those points. 

  
3 Prediction with Gaussian Processes 
Given a training data set ' consisting of N pairs of 
vector inputs nx  and scalar outputs tn for n=1…N, a 
Gaussian process (GP) prediction model is 
concerned with evaluating the probability 
P( 1Nt + |', 1N +x ). The input vector for a point to be 
predicted is denoted 1+Nx  and 1+Nt is the 
corresponding prediction. The inputs are L-
dimensional and the targets are scalar. ( { })N NP t x  is 

assumed to follow a Gaussian distribution given by 
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where NC is the covariance matrix for P(tN|',x), and 

µ is the mean. {xN} and tN  are the sets of all inputs 
and outputs in ' respectively. For properly 
normalized data, it can be assumed that µ=0. The 
joint distribution for the training outputs and the 
prediction 1N +t will take a similar form to (1) and is 
given by 
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where tN+1={tN, 1Nt + }. The predictive probability 
distribution for the prediction 1+Nt is therefore 
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Note that the covariance matrix 1N +C  is just 

NC with an extra row and column attached: 
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where the k  and the κ scalar are defined as  
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Collecting the terms that are a function of 1+Nt  in 
equation (3), the Gaussian distribution could be 
expressed as:  
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Hence, the prediction is given by the mean value 
1N̂t + , and 

1

2
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σ

+
provides a measure of the confidence 

in the prediction. The error bars on the prediction are 

1N̂t
σ

+
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Elements of the covariance matrix NC as well as 
in the above two expressions are calculated using the 
covariance function ( , )i jC x x , thus ( ) ( , )N ij i jC=C x x . 

The covariance function used here is quite popular in 
the literature for the interpretability of its 
hyperparameters. It is given by 
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here ( )l
nx is the lth component of xn. The 

hyperparameters are defined as 1 2 3log( , , , )= θ θ θ rθ and 
they have the following meanings: 1θ  controls the 
overall vertical scale relative to the mean of the 
Gaussian process, 2θ sets the bias of the correlation, 

3θ  sets the noise level, and r  allows a different 
distance measure for each input dimension. For 
irrelevant inputs, the corresponding rl will be large 
and the model will ignore that input. This property 
of r  in GP is termed automatic relevance 
determination (ARD), and could prove very useful 
for understating the relevance of the various inputs 
as well as specifying priors during hyperparameter 
optimization.  The hyperparameters are defined as 
the log of the variables in equation (10) to restrict 
their values to be positive.  

Using Bayes’ theorem, the posterior probability 
of the hyperparameters given the training data is 
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Rather than maximizing (11) directly to 
determine the maximum a posteriori estimate for θ , 
the logarithm of the probability is maximized. The 
denominator of (11) is not a function of θ  and will 
therefore be considered constant for optimization 

purposes. The logarithm of the posterior probability 
is hence 
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This maximization is usually carried out using a 
gradient-based optimizer. For the results presented 
here a conjugate gradient optimizer was used. The 
derivative of (12) with respect to one of the 
hyperparameters, θ  is 
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To summarize, the procedure is to first use 
equations (12) and (13) to obtain the maximum a 
posteriori value of θ . The hyperparameters obtained 
are then used to construct the final covariance 
matrix. This is then inverted and used with equations 
(5) and (6) to evaluate equations (8) and (9).  

Since the focus here is on deterministic models, 
the noise level term 3θ  in equation (10) is not 
considered in covariance calculations. 

3.1 Online model expansion with GP  

The GP model can expand to include new data 
points with minimal computational cost. This is 
based on the assumption that the newly added points 
are not likely imply a significant change in the 
hyperparameters, i.e., that the general form of the 
function described by the new larger data set is 
approximately the same as the one described by the 
old. The new inverse of the covariance matrix 1

L
−C

�
 

can be constructed from the old 1
N
−C using inversion 

by partitioning [13: 77-78]. The partitioned inverse 
equation is  
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In the above expressions the number of newly 
added points is M. The size of the new inverse 
covariance matrix is L×L, where L=N+M. K is an 
N×M matrix, having the covariance of the newly 
added points to those that were already used for 
training. V is an M×M symmetric matrix comprising 
of the covariance of newly added points to one 
another.   

After 1
L
−C�  is constructed, it is used in equations 

(8) and (9) to carry out prediction and error 
estimation. 

4 Evolutionary-Gaussian processes 
synthesis 

Although the previous fitness and DOE based 
approach [3] have worked reasonably well, it 
contains many adjustable parameter that could be 
very much problem dependant (generation delay, 
fitfac, doefac, η, and ε). The approach presented 
here is simpler and more elegant. Instead of making 
distance calculations and attempting to satisfy design 
of experiments requirement, it simply makes use of 
the GP-predicted standard deviation as shown in 
Figure 1. 
 
Input maxeval, maxstdtol 
Begin  
  Random population initialization 
  Evaluation of Np individuals 
  Nacc=Np 
  OldNacc=Nacc 
  Construct initial Gaussian process 
  while(Nacc <  maxeval) 
    Apply evolutionary operators 
    for i=1 to Np 

      
maxeval Nacc

stdtol maxstdtol
maxeval Np

−=
−

 

      if( ( )i stdtolσ >p ) 

       evaluate ip  using expensive model 

       expand the GP to include ip  

       Nacc=Nacc+1 
      end if 
      else 

       evaluate ip  using the GP 

      end else  

    end for 
    if(OldNacc==Nacc)  
      maxstdtol=maxstdtol/2  
    end if 
    OldNacc=Nacc 

  end while 

End 

Figure 1 Pseudo code for the evolutionary-GP 
synthesis 

In the above pseudo code, the population consists 
of Np individuals. The parameters for each 
population member is denoted by ip , where i=1… 
Np. The maximum number of affordable expensive 
model calculation is maxeval. maxstdtol is a 
parameter that describes the maximum allowable 
tolerance on the prediction uncertainty. 

The standard deviation on the model accuracy 
( )iσ p  is calculated by taking the square root of the 

variance expression equation (9). stdtol  is the 
currently allowable tolerance. Starting with a value 
of maxstdtol, it decreases linearly to zero. Hence the 
GP is only when the accuracy of the prediction is 
inadequate. The tolerance for prediction error 
decreases gradual as the search progresses.  

The target values of the training data for the GP 
were normalized to have a mean of zero and a 
standard deviation of 1. Although, this is not strictly 
necessary, it was found to improve the numerical 
stability of the GP and to yield better predictions, as 
it better satisfies the assumption in equation (2). 
Thus the standard deviation values predicted by the 
GP are actually the fraction of the standard deviation 
of the evolutionary algorithm sampled points that 
were used to train it. In all the experiments reported 
here maxstdtol was set to 10%.  

The algorithm works by first initializing a 
population of size Np and using it to construct the 
initial GP. Then it proceeds by applying the 
appropriate evolutionary operators to yield a new 
progeny population. The predicted standard 
deviation of each member of the population is then 
evaluated. If this does not exceed the currently 
allowable tolerance it is evaluated using the GP, 
otherwise it is evaluated using the computationally 
expensive model and that result used to update the 
GP. If the new population did not result in any GP 
model update, the allowable tolerance is tightened 
by a factor of two. This is done to prevent an infinite 
loop scenario where all evaluations continue to be 
carried out using the GP.  The evolutionary cycle is 



then repeated until the maximum number of true 
evaluations is reached.   

Initially the GP’s hyperparameters are optimized 
using the initial population, afterwards simple online 
model expansion is carried out using equations (14) 
to (19).  When the total number of points added 
using online model expansion exceeds 40% of the 
number of points that were last used when the GP 
model was optimized, a reoptimization step is 
executed. In this reoptimization step the old 
hyperparameters are used as initial guess in 
equations (12) and (13) for carrying out the 
conjugate gradient search. 

5 Experiments on Satellite Boom 
optimization 

A two dimensional satellite boom structure was used 
to evaluate the proposed EA-GP synthesis. The 
baseline structure is shown below in Figure 2. It 
consists of 40 individual Euler-Bernoulli beams 
connected at 20 joints [15]. Each of the 40 beams 
has the same properties per unit length. The beam is 
excited at one end as shown. The goal of the 
optimization was set at minimizing the frequency 
averaged response of the end beam in the range 150-
250 Hz. The optimizer was allowed to generate new 
geometries by varying the coordinates of the inner 
18 joints of this simplified structure. That is 36 
optimization variables representing the x and y joint 
positions. 

 
Figure 2 The baseline structure 

A typical frequency response is a show below in 
Figure 3. The optimized structure for this particular 
graph is shown in Figure 4. 

 
Figure 3 Frequency response of the 2D boom 

 
Figure 4 Optimized structure 

In this problem, the objective function to be 
minimized depends on the area under the graph in 
Figure 3 in the range of 150-250 Hz. The calculation 
of a single frequency point in this plot requires the 
solution of some 260 complex simultaneous 
equations. The more points that are used to perform 
the integration, the more accurate is the evaluation. 

Here, eleven points from the frequency response 
curve were used to calculate the average energy 
transmitted in the structure in the range of 150-250 
Hz. The frequency response calculations were 
carried out using matrix receptance methods based 
of the Green functions of the individual beam 
elements [16]. 

The log energy values were used to construct the 
GP. This pre-processing step was found to be 
essential, as the GP couldn’t cope with making 
predictions using the raw data, where function target 
values differ by orders of magnitude (it should be 
noted that is it a common practice in structural 
dynamics to use the log of the energy quantities). 

A GA typical of those described in Michalewicz 
[17] was used for the experiments reported here. The 
GA makes use of arithmetic crossover, gaussian 
mutation, and the tournament selection operator. The 
crossover and mutation probabilities were kept 
constant at 0.9 and 0.15 for all the results reported 
here. The population size was set to 50, and the 



tournament size was set to 2. maxeval was set to 
500. 

A baseline comparison was conducted by running 
the same GA solely on the accurate function for 500 
evaluations. Five runs were carried out for 
comparison. The average baseline objective function 
value came to 1.28× 10-10. This was used to 
normalize the results shown in the table below. The 
results are averaged over five runs.  

 
 Average  

Baseline 1 

Evolutionary-GP approach 0.86 
Evolutionary-GP with initial GP 0.38 

Table 1 Normalized energy levels. 

Using the approach outlined clearly resulted in an 
improvement. It was found that during optimization 
the GP was used only about 20 % of the time. Better 
results were obtained when an initial GP was used 
instead of using the evolutionary algorithm’s initial 
population. This initial GP was constructed using 
500 randomly sampled points. Once built it was used 
for all subsequent runs. As the table shows, 
significant improvements were obtained by using an 
initial GP. In this latter strategy, the GP was used 
about 46% of the time. The percentage usage of the 
GP may be further improved if a higher maxstdtol 
value was used, however this might adversely affect 
the quality of the optima found by the optimizer as it 
might be mislead at the early stages of the search.  

6 Conclusion and future work 
We have presented an approach for combining GP 
and EAs to make more efficient use of 
computationally expensive function evaluations. The 
choice of GP as an approximation tool was justified. 
The suggested algorithm overcomes some the 
limitation of earlier approaches, in that the number 
of adjustable parameters is reduced significantly.  

It was applied to the satellite boom optimization 
problem and positive results were obtained. It is 
noteworthy to mention that optimizing the 
hyperparameters for the beam problem was far from 
trivial. There was a total of 38 hyperparameters and 
the likelihood function of equation (12) was highly 
multimodal. Many starting points in the 
hyperparameter space had to be used to obtain a 
good GP. This suggests that for problems of large 
dimensionality, it might be better to use evolutionary 
search to optimize the hyperparameters, instead of 

the conjugate gradient optimizer traditional used for 
GP.  

Starting with an initially constructed GP has also 
shown to be advantageous to using the search data 
only. So, the more information provided to GP 
initially the better.  

Building and updating the GP is essentially a 
cumulative process and the computational 
complexity of its construction is of the order N3. 
Hence for a large enough N the cost of constructing 
a GP will be quite significant. The use of multiple 
local metamodels is expected to alleviate this 
burden. This can be achieved by adopting the 
strategy suggested in [18], where a SOM is used to 
partition the data space for constructing interpolating 
models.  
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