
Evolutionary Optimization for Computationally expensive problems
using Gaussian Processes

 Mohammed A. El-Beltagy Andy J. Keane
 Computational Engineering and Design Centre Computational Engineering and Design Centre
 University of Southampton University of Southampton
 Highfield, Southampton SO17 1BJ Highfield, Southampton SO17 1BJ
 United Kingdom United Kingdom
 mohammed@computer.org Andy.Keane@soton.ac.uk

Abstract The use of statistical models to approximate
detailed analysis codes for evolutionary optimization has
attracted some attention [1-3]. However, those early
methodologies do suffer from some limitations, the most
serious of which being the extra tuning parameter
introduceds. Also the question of when to include more
data points to the approximation model during the search
remains unresolved. Those limitations might seriously
impede their successful application. We present here an
approach that makes use of the extra information
provided by a Gaussian processes (GP) approximation
model to guide the crucial model update step. We present
here the advantages of using GP over other neural-net
biologically inspired approaches. Results are presented
for a real world-engineering problem involving the
structural optimization of a satellite boom.

Keywords: Evolutionally Computation, Optimization,
Gaussian Processes, Computationally expensive
problems.

1 Introduction
The optimization of complex high dimensional,
multimodal problems often requires a relatively high
number of function evaluations. In many real world
problems, this computational burden cannot be
afforded. Examples of such problems include large-
scale finite element analysis (FEA) or computational
fluid dynamics (CFD) simulations. In such
problems, the cost of a single function evaluation is
in the order of hours of supercomputer time.

In is been proven useful to build approximate
models of the expensive analysis code and use it for
the purpose of carrying out optimization [4]. These
approximate models are orders of magnitude cheaper
to run than the full analysis codes. Many regression
and interpolation tools could be used to construct
such an approximation (e.g. least square regression,
back propagating artificial neural net, response
surface models, etc.).

In the multidisciplinary optimization (MDO)
community the main focus has been on using
response surface analysis and polynomial fitting

techniques to build the approximate models. These
methods have been proven to work well when single
point traditional gradient-based optimization
methods are used. However, they cannot cope with
large dimensional multimodal problems since they
generally carry out approximation using simple
quadratic models. [5-11].

During the optimization, it is only feasible that
the expensive analysis be used sparingly. This
requirement clashes with that of good approximate
model building, where as many sampled points are
needed to obtain a good approximation. There is
hence a need to develop a framework that balances
those two requirements. Alexandrov et al [12]
presented an approximation management framework
for conducting gradient-based search.

In our earlier work [3], we presented a framework
for approximate model update based on fitness and
design of experiments (DOE) criteria. Unlike Ratle’s
work [1, 2], where only the most recently evaluated
points were used to construct the approximation, in
our approach the approximation model was
continuously expanding; retaining all useful
information provided by the evolutionary search. To
limit the cost of model reconstruction, Ratle
discarded most of the accurately evaluated points
while updating his approximate model. It is our view
that for problems of sufficient complexity and
computational expense, the risk involved is
discarding potentially useful points from the
approximate model far outweigh the computational
savings gained by discarding them.

Like Ratle, a major drawback of our approach is
that there were up to five extra tuning parameters to
adjust for model construction and update. In this
paper a present a far more elegant and flexible
approach for carrying approximate model update.

We use here a Gaussian process approximation
model, since it has several attractive features. Most
important of which is the ability to provide an error
bar for each prediction. An algorithm for

approximate model update is built around this
capability. Results on high dimensional multimodal
real world engineering problem are quite
encouraging.

This paper is organized as follows: in the next
section we justify our choice of using Gaussian
process over other NN techniques. In section 3 we
provide a brief description of how prediction is
carried out using Gaussian processes. Section 4
describes the Evolutionary-Gaussian processes
synthesis. Section 5 describes the real world
problem and details experimental results. The paper
closes with a brief conclusion and discussion of
future work.

2 Why Gaussian Processes?
Although other artificial neural network models
could have been used (e.g. multilayer preceptron
networks (MLP), and radial basis function networks
RBFN), to construct an approximate model,
Gaussian Process was preferred for the following
reasons:
1. The ability to overcome the problem of over-

fitting, given a limited data set: Over-fitting
could be handled using other ANNs (by using
regularization for instance), but still the solution
obtained might be sensitive to the ANN’s
architecture (number of layers, number of nodes
in each layer, …etc). It has been shown by Neal
[14] that the properties of a neural network with
one hidden layer converge to those of a
Gaussian process as the number of hidden
neurons tends to infinity if standard
regularization “weight decay” priors are
assumed.

2. A limited number of meaningful tunable
parameters: Unlike the weights of other ANNs,
the GP’s hyperparameters are limited to the
problem size. These optimized hyperparameters
can indicate different functional relationships
between the model parameters. Furthermore, if
the model builder understands these functional
relationships, s/he could incorporate this
knowledge in the form of priors to be used
during the optimization of the hyperparameters.
This is expressed in the ()P θ term in equations
(12) and (13).

3. Online data addition without the need of having
to re-optimize the model parameters: This may
substantially reduce the computational cost of
increasing the number of training points after the
GP has been optimized for a large subset of
those points.

3 Prediction with Gaussian Processes
Given a training data set ' consisting of N pairs of
vector inputs nx and scalar outputs tn for n=1…N, a
Gaussian process (GP) prediction model is
concerned with evaluating the probability
P(1Nt + |', 1N +x). The input vector for a point to be
predicted is denoted 1+Nx and 1+Nt is the
corresponding prediction. The inputs are L-
dimensional and the targets are scalar. ({ })N NP t x is

assumed to follow a Gaussian distribution given by
11 1

(,) exp () ()
2(2)

T
N NN

N

P µ µ
π

− = − − −
t x t C t

C

�

,
(1)

where NC is the covariance matrix for P(tN|',x), and

µ is the mean. {xN} and tN are the sets of all inputs
and outputs in ' respectively. For properly
normalized data, it can be assumed that µ=0. The
joint distribution for the training outputs and the
prediction 1N +t will take a similar form to (1) and is
given by

1
1 1 1 1 11

1

1 1
(,) exp

2(2)

T
N N N N NN

N

P
π

−
+ + + + ++

+

 = −
t x t C t

C

�

,
(2)

where tN+1={tN, 1Nt + }. The predictive probability
distribution for the prediction 1+Nt is therefore

 −−

π

=

=

−
+

−
++

+

++
++

)(
2

1
exp

)2(

1

)}{(

),(
),(

1
1

1
11

1

11
11

NN
T
NNN

T
N

N

N

NN

NN
NN

P

P
tP

tCttCt

C

C

xt

xt
x

�
�

. (3)

Note that the covariance matrix 1N +C is just

NC with an extra row and column attached:

1

N

N

T

+

 =
 κ

C k
C

k ,
(4)

where the k and the κ scalar are defined as
1 1 2 1 1[(,), (,), , (,)]T

N N N NC C C+ + +=k x x x x x x�

(5)

1 1(,).N NC + +κ = x x

(6)

Collecting the terms that are a function of 1+Nt in
equation (3), the Gaussian distribution could be
expressed as:

σ
−

−

π

=
+

++

+
++ 2

ˆ

2
11

1

11

1
2

)ˆ(
exp

)2(

1
),(

Nt

NN

N

N

NN
tt

tP

C

C
x

�

, (7)

where
1

1
ˆ ,T
N N Nt −

+ = k C t

(8)

1

2 1
ˆ .
N

T
N Nt +

−σ = κ − k C t

(9)

Hence, the prediction is given by the mean value
1N̂t + , and

1

2

N̂t
σ

+
provides a measure of the confidence

in the prediction. The error bars on the prediction are

1N̂t
σ

+
± .

Elements of the covariance matrix NC as well as
in the above two expressions are calculated using the
covariance function (,)i jC x x , thus () (,)N ij i jC=C x x .

The covariance function used here is quite popular in
the literature for the interpretability of its
hyperparameters. It is given by

()() ()

1 2 32
1

1
(,) exp

2

l lL
i j

i j ij
l l

x x
C

r=

 −
 = θ − + θ + δ θ

∑x x

.
(10)

here ()l
nx is the lth component of xn. The

hyperparameters are defined as 1 2 3log(, , ,)= θ θ θ rθ and
they have the following meanings: 1θ controls the
overall vertical scale relative to the mean of the
Gaussian process, 2θ sets the bias of the correlation,

3θ sets the noise level, and r allows a different
distance measure for each input dimension. For
irrelevant inputs, the corresponding rl will be large
and the model will ignore that input. This property
of r in GP is termed automatic relevance
determination (ARD), and could prove very useful
for understating the relevance of the various inputs
as well as specifying priors during hyperparameter
optimization. The hyperparameters are defined as
the log of the variables in equation (10) to restrict
their values to be positive.

Using Bayes’ theorem, the posterior probability
of the hyperparameters given the training data is

() () ()
()

{ }, { }

{ }

N N N

N N

P P
P

P
=

t x x

t x

θ θ
θ '

.
(11)

Rather than maximizing (11) directly to
determine the maximum a posteriori estimate for θ ,
the logarithm of the probability is maximized. The
denominator of (11) is not a function of θ and will
therefore be considered constant for optimization

purposes. The logarithm of the posterior probability
is hence

() () ()
() ()

1

ln { }, ln { } ln { }

ln { }, ln

1 1
log log 2 ln () .

2 2 2

N N N N N

N N

T
N N N N

P P P

P P const

N
P const−

= + −

= + +

= − − − π + +

t x x t x

t x

C t C t

θ θ

θ θ

θ

�

 (12)

This maximization is usually carried out using a
gradient-based optimizer. For the results presented
here a conjugate gradient optimizer was used. The
derivative of (12) with respect to one of the
hyperparameters, θ is

θθθθ ∂
θ

+
∂

∂
+

∂
∂

−=
∂
∂ −−−)(ln

2

1

2

1 111 P
Tr NN

N
N

T
N

N
N tC

C
Ct

C
C

�

.
(13)

To summarize, the procedure is to first use
equations (12) and (13) to obtain the maximum a
posteriori value of θ . The hyperparameters obtained
are then used to construct the final covariance
matrix. This is then inverted and used with equations
(5) and (6) to evaluate equations (8) and (9).

Since the focus here is on deterministic models,
the noise level term 3θ in equation (10) is not
considered in covariance calculations.

3.1 Online model expansion with GP

The GP model can expand to include new data
points with minimal computational cost. This is
based on the assumption that the newly added points
are not likely imply a significant change in the
hyperparameters, i.e., that the general form of the
function described by the new larger data set is
approximately the same as the one described by the
old. The new inverse of the covariance matrix 1

L
−C

�

can be constructed from the old 1
N
−C using inversion

by partitioning [13: 77-78]. The partitioned inverse
equation is

1
ˆ

,
ˆ ˆL T

−

=

M K
C

K V

�

(14)

where

() 11ˆ ,T
N

−−= −V V K C K

(15)

1ˆ ˆ ,N
−= −K C KV

(16)

1 1ˆ ,T
N N
− −= +M C KK C

(17)

and

1 1 1

1

(,) (,)

(,) (,)

N N M

N N N N M

C C

C C

+ +

+ +

 =

x x x x

K

x x x x

	

 �

	
(18)

1 1 1

1

(,) (,)

(,) (,)

N N N N M

N N M N M N M

C C

C C

+ + + +

+ + + +

 =

x x x x

V

x x x x

�
 �

� .
(19)

In the above expressions the number of newly
added points is M. The size of the new inverse
covariance matrix is L×L, where L=N+M. K is an
N×M matrix, having the covariance of the newly
added points to those that were already used for
training. V is an M×M symmetric matrix comprising
of the covariance of newly added points to one
another.

After 1
L
−C� is constructed, it is used in equations

(8) and (9) to carry out prediction and error
estimation.

4 Evolutionary-Gaussian processes
synthesis

Although the previous fitness and DOE based
approach [3] have worked reasonably well, it
contains many adjustable parameter that could be
very much problem dependant (generation delay,
fitfac, doefac, η, and ε). The approach presented
here is simpler and more elegant. Instead of making
distance calculations and attempting to satisfy design
of experiments requirement, it simply makes use of
the GP-predicted standard deviation as shown in
Figure 1.

Input maxeval, maxstdtol
Begin
 Random population initialization
 Evaluation of Np individuals
 Nacc=Np
 OldNacc=Nacc
 Construct initial Gaussian process
 while(Nacc < maxeval)
 Apply evolutionary operators
 for i=1 to Np

maxeval Nacc

stdtol maxstdtol
maxeval Np

−=
−

 if(()i stdtolσ >p)

 evaluate ip using expensive model

 expand the GP to include ip

 Nacc=Nacc+1
 end if
 else

 evaluate ip using the GP

 end else

 end for
 if(OldNacc==Nacc)
 maxstdtol=maxstdtol/2
 end if
 OldNacc=Nacc

 end while

End

Figure 1 Pseudo code for the evolutionary-GP
synthesis

In the above pseudo code, the population consists
of Np individuals. The parameters for each
population member is denoted by ip , where i=1…
Np. The maximum number of affordable expensive
model calculation is maxeval. maxstdtol is a
parameter that describes the maximum allowable
tolerance on the prediction uncertainty.

The standard deviation on the model accuracy
()iσ p is calculated by taking the square root of the

variance expression equation (9). stdtol is the
currently allowable tolerance. Starting with a value
of maxstdtol, it decreases linearly to zero. Hence the
GP is only when the accuracy of the prediction is
inadequate. The tolerance for prediction error
decreases gradual as the search progresses.

The target values of the training data for the GP
were normalized to have a mean of zero and a
standard deviation of 1. Although, this is not strictly
necessary, it was found to improve the numerical
stability of the GP and to yield better predictions, as
it better satisfies the assumption in equation (2).
Thus the standard deviation values predicted by the
GP are actually the fraction of the standard deviation
of the evolutionary algorithm sampled points that
were used to train it. In all the experiments reported
here maxstdtol was set to 10%.

The algorithm works by first initializing a
population of size Np and using it to construct the
initial GP. Then it proceeds by applying the
appropriate evolutionary operators to yield a new
progeny population. The predicted standard
deviation of each member of the population is then
evaluated. If this does not exceed the currently
allowable tolerance it is evaluated using the GP,
otherwise it is evaluated using the computationally
expensive model and that result used to update the
GP. If the new population did not result in any GP
model update, the allowable tolerance is tightened
by a factor of two. This is done to prevent an infinite
loop scenario where all evaluations continue to be
carried out using the GP. The evolutionary cycle is

then repeated until the maximum number of true
evaluations is reached.

Initially the GP’s hyperparameters are optimized
using the initial population, afterwards simple online
model expansion is carried out using equations (14)
to (19). When the total number of points added
using online model expansion exceeds 40% of the
number of points that were last used when the GP
model was optimized, a reoptimization step is
executed. In this reoptimization step the old
hyperparameters are used as initial guess in
equations (12) and (13) for carrying out the
conjugate gradient search.

5 Experiments on Satellite Boom
optimization

A two dimensional satellite boom structure was used
to evaluate the proposed EA-GP synthesis. The
baseline structure is shown below in Figure 2. It
consists of 40 individual Euler-Bernoulli beams
connected at 20 joints [15]. Each of the 40 beams
has the same properties per unit length. The beam is
excited at one end as shown. The goal of the
optimization was set at minimizing the frequency
averaged response of the end beam in the range 150-
250 Hz. The optimizer was allowed to generate new
geometries by varying the coordinates of the inner
18 joints of this simplified structure. That is 36
optimization variables representing the x and y joint
positions.

Figure 2 The baseline structure

A typical frequency response is a show below in
Figure 3. The optimized structure for this particular
graph is shown in Figure 4.

Figure 3 Frequency response of the 2D boom

Figure 4 Optimized structure

In this problem, the objective function to be
minimized depends on the area under the graph in
Figure 3 in the range of 150-250 Hz. The calculation
of a single frequency point in this plot requires the
solution of some 260 complex simultaneous
equations. The more points that are used to perform
the integration, the more accurate is the evaluation.

Here, eleven points from the frequency response
curve were used to calculate the average energy
transmitted in the structure in the range of 150-250
Hz. The frequency response calculations were
carried out using matrix receptance methods based
of the Green functions of the individual beam
elements [16].

The log energy values were used to construct the
GP. This pre-processing step was found to be
essential, as the GP couldn’t cope with making
predictions using the raw data, where function target
values differ by orders of magnitude (it should be
noted that is it a common practice in structural
dynamics to use the log of the energy quantities).

A GA typical of those described in Michalewicz
[17] was used for the experiments reported here. The
GA makes use of arithmetic crossover, gaussian
mutation, and the tournament selection operator. The
crossover and mutation probabilities were kept
constant at 0.9 and 0.15 for all the results reported
here. The population size was set to 50, and the

tournament size was set to 2. maxeval was set to
500.

A baseline comparison was conducted by running
the same GA solely on the accurate function for 500
evaluations. Five runs were carried out for
comparison. The average baseline objective function
value came to 1.28× 10-10. This was used to
normalize the results shown in the table below. The
results are averaged over five runs.

 Average

Baseline 1

Evolutionary-GP approach 0.86
Evolutionary-GP with initial GP 0.38

Table 1 Normalized energy levels.

Using the approach outlined clearly resulted in an
improvement. It was found that during optimization
the GP was used only about 20 % of the time. Better
results were obtained when an initial GP was used
instead of using the evolutionary algorithm’s initial
population. This initial GP was constructed using
500 randomly sampled points. Once built it was used
for all subsequent runs. As the table shows,
significant improvements were obtained by using an
initial GP. In this latter strategy, the GP was used
about 46% of the time. The percentage usage of the
GP may be further improved if a higher maxstdtol
value was used, however this might adversely affect
the quality of the optima found by the optimizer as it
might be mislead at the early stages of the search.

6 Conclusion and future work
We have presented an approach for combining GP
and EAs to make more efficient use of
computationally expensive function evaluations. The
choice of GP as an approximation tool was justified.
The suggested algorithm overcomes some the
limitation of earlier approaches, in that the number
of adjustable parameters is reduced significantly.

It was applied to the satellite boom optimization
problem and positive results were obtained. It is
noteworthy to mention that optimizing the
hyperparameters for the beam problem was far from
trivial. There was a total of 38 hyperparameters and
the likelihood function of equation (12) was highly
multimodal. Many starting points in the
hyperparameter space had to be used to obtain a
good GP. This suggests that for problems of large
dimensionality, it might be better to use evolutionary
search to optimize the hyperparameters, instead of

the conjugate gradient optimizer traditional used for
GP.

Starting with an initially constructed GP has also
shown to be advantageous to using the search data
only. So, the more information provided to GP
initially the better.

Building and updating the GP is essentially a
cumulative process and the computational
complexity of its construction is of the order N3.
Hence for a large enough N the cost of constructing
a GP will be quite significant. The use of multiple
local metamodels is expected to alleviate this
burden. This can be achieved by adopting the
strategy suggested in [18], where a SOM is used to
partition the data space for constructing interpolating
models.

Acknowledgments

This work was supported under EPSRC grant no
GR/L04733.

Bibliography

[1] A. Ratle, “Optimal sampling strategies for
learning a fitness model,” in Proceedings of the
1999 Congress on Evolutionary Computation, vol. 3.
Piscataway, NJ: IEEE Press, 1999, pp. 2078-2085.
[2] A. Ratle, “Accelerating the convergence of
Evolutionary Algorithms by Fitness Landscape
Approximation,” in Parallel Problem Solving from
Nature- PPSN V, Springer-Verlag, Lecture Notes in
Computer Science, T. Bäck, A. E. Eiben, M.
Schoenauer, and H. P. Schwefel, Eds. Berlin:
Springer, 1998, pp. 87-96.
[3] M. A. El-Beltagy, P. B. Nair, and A. J.
Keane, “Metamodeling Techniques For
Evolutionary Optimization of Computationally
Expensive Problems: Promises and Limitations,” in
Proceedings of the Genetic and Evolutionary
Computation Conference, vol. 1, W. Banzhaf, J.
Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M.
Jakiela, and R. E. Smith, Eds. San Francisco,
California: Morgan Kaufmann, 1999, pp. 196-203.
[4] T. W. Simpson, J. D. Peplinski, P. N. Koch,
and J. K. Allen, “On the Use of Statistics in Design
and the Implications for Deterministic Computer
Experiments,” in ASME Design Theory and
Methodology, J. Shah, Ed. New York: ASME, 1997,
pp. ASME97-DETC97/DTM-3881.

[5] J. Sobieszczanski-Sobieski, “Optimization
by Decomposition,” in Structural Optimization:
Status and Promis, G. I. N. Rozvany, Ed. Dordrecht:
Kluwer Academic, 1993, pp. 193-233.
[6] J. Sobieszczanski-Sobieski and R. T. Haftka,
“Multidisciplinary Aerospace Design Optimization:
Survey of Recent Developments,” 34th AIAA
Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, AIAA Paper No. 96-0711, pp. 32, 1996.
[7] P. Hajela and E. Lee, “Topological
optimization of rotorcraft subfloor structures for
crashworthiness considerations,” Computers and
Structures, vol. 64, pp. 65-76, 1997.
[8] J. F. M. Barthelemy and R. T. Haftka,
“Approximation concepts for optimum structural
design-a review,” Structural Optimization, vol. 5,
pp. 129-144, 1993.
[9] F. Van Keulen, V. V. Toropov, and A. A.
Polynkine, “Shape Optimization Strategies using the
Multi-Point Approximation Method and Adaptive
Mesh Refinement,” Proceedings of the First World
Congress on Structural and Multidisciplinary
Optimization. Pergamon, pp. 67-74, 1995.
[10] V. V. Toropov, “Simulation approach to
structural optimization,” Structural Optimization,
vol. 1, pp. 37-46, 1989.
[11] V. V. Toropov, A. A. Filatov, and A. A.
Polynkin, “Multiparameter structural optimization
using FEM and multipoint explicit approximations,”
Structural Optimization, vol. 6, pp. 7-14, 1993.
[12] N. M. Alexandrov, R. M. Lewis, C. R.
Gumbert, L. L. Green, and P. A. Newman,
“Optimization with variable-fidelity models applied
to wing design,” The american institute of aeronautic
ans astronuatics (AIAA), 38th Aeropace Sciences
Meeting & Exhibit 2000-0841, 2000.
[13] W. H. Press, B. P. Flannery, S. A.
Teukolsky, and W. T. Vetterling, Numerical
Recipes: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1986.
[14] R. M. Neal, Bayesian Learning for Neural
Networks: Springer, 1996.
[15] A. J. Keane and A. P. Bright, “Passive
vibration control via unusual geometries:
Experiments on model aerospace structures,”
Journal of Sound and Vibration, vol. 190, pp. 713-
719, 1996.
[16] K. Shankar and A. J. Keane, “Energy flow
prediction in a structure of rigidly joined beams
using receptance theory,” Jouranl of Souand and
Vibratation, vol. 185(5), pp. 867-890, 1995.

[17] Z. Michalewicz, Genetic Algorithms+Data
Structures =Evolution Programs, 3rd ed. New York:
Springer, 1996.
[18] J. Vesanto, “Using the SOM and Local
Models in Time-Series Prediction,” in Proceedings
1997 Workshop on Self-Organizing Maps
(WSOM’97), 1997.

